Distinct repertoires of microRNAs present in mouse astrocytes compared to astrocyte-secreted exosomes

نویسندگان

  • Ana Jovičić
  • Aaron D Gitler
چکیده

BACKGROUND Astrocytes are the most abundant cell type in the central nervous system (CNS) and secrete various factors that regulate neuron development, function and connectivity. microRNAs (miRNAs) are small regulatory RNAs involved in posttranslational gene regulation. Recent findings showed that miRNAs are exchanged between cells via nanovesicles called exosomes. In this study, we sought to define which miRNAs are contained within exosomes secreted by astrocytes. We also explored whether astroglial miRNA secretion via exosomes is perturbed in a mouse model of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease where astrocytes play a crucial role in driving disease progression. METHODOLOGY/PRINCIPAL FINDINGS By isolating and profiling the expression of miRNAs from primary mouse astrocytes and from the exosomes that astrocytes secrete, we compared miRNA expression in the cells and secreted vesicles. We established that miRNA expression profiles of astrocytes and their exosomes are vastly different. In addition, we determined that exosomal miRNA expression in astrocytes is not significantly perturbed in a mouse model of ALS. CONCLUSIONS Astrocytes secrete numerous miRNAs via exosomes and miRNA species contained in exosomes are considerably different from miRNAs detectable in astrocytes, suggesting the existence of a mechanism to select certain miRNAs for inclusion or exclusion from exosomes. The exosomal miRNA profiling dataset we have generated will provide a resource to aid in the investigation of this selection mechanism. Finally, the miRNA expression profile in astrocyte-secreted exosomes is not perturbed by expression of mutant SOD1-G93A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiRNAs in Astrocyte-Derived Exosomes as Possible Mediators of Neuronal Plasticity

Astrocytes use gliotransmitters to modulate neuronal function and plasticity. However, the role of small extracellular vesicles, called exosomes, in astrocyte-to-neuron signaling is mostly unknown. Exosomes originate in multivesicular bodies of parent cells and are secreted by fusion of the multivesicular body limiting membrane with the plasma membrane. Their molecular cargo, consisting of RNA ...

متن کامل

The Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells

Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...

متن کامل

Exosomal miR-7 Mediates Bystander Autophagy in Lung after Focal Brain Irradiation in Mice

This study investigated whether exosomal microRNA-7 (miR-7) mediates lung bystander autophagy after focal brain irradiation in mice. After 10 Gy or sham irradiation of mice brains, lung tissues were extracted for the detection of autophagy markers by immunohistochemistry, western blotting, and quantitative real-time reverse transcription PCR (qRT-PCR), meanwhile the brains were dissociated, the...

متن کامل

A Refined Bead-Free Method to Identify Astrocytic Exosomes in Primary Glial Cultures and Blood Plasma

Astrocytes are the most abundant glial cell type in the central nervous system (CNS) and are known to fulfill critical homeostatic functions. Dysfunction of activated astrocytes is also known to participate in the development of several neurological diseases. Astrocytes can be uniquely identified by expression of the intermediate filament protein glial acidic fibrillary protein (GFAP). Herein, ...

متن کامل

Understanding the Role of Dicer in Astrocyte Development

The Dicer1 allele is used to show that microRNAs (miRNAs) play important roles in astrocyte development and functions. While it is known that astrocytes that lack miRNAs are dysregulated, the in vivo phenotypes of these astrocytes are not well understood. In this study, we use Aldh1l1-EGFP transgene, a marker of astrocytes, to characterize mouse models with conditional Dicer1 ablation (via eith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017